集体外出活动,要求每辆客车上至少.jpg)
导读:设租用甲种客车x辆,租车总费用y元,由每辆汽车上至少要有1名老师,汽车总数不能大于7辆;由要保证240名师生有车坐,汽车总数不能小于24045,∴x取6,依题意,得y=400x+280(6-x)整理,得y=120x+1680.∴y与x的函数
设租用甲种客车x辆,租车总费用y元,
由每辆汽车上至少要有1名老师,汽车总数不能大于7辆;
由要保证240名师生有车坐,汽车总数不能小于
| 240 |
| 45 |
∴x取6,
依题意,得y=400x+280(6-x)
整理,得y=120x+1680.
∴y与x的函数关系式为:y=120x+1680;
依题意,得45x+30(6-x)≥240,
解得x≥4.
又∵x≤6,
∴4≤x≤6.
在y=120x+1680中,k=120>0,
∴y随x的增大而增大.
∴当x取最小值,即x=4时,y有最小值.
即当租甲种车4辆,租乙种车2辆时,费用最少.
故选A.
你这道题少了个条件,人步行的速度为5km/h
(1)如果汽车送4人到达考场,然后回到故障处接人,那么他2个来回共走15×4=60(km)
所以总共话时间为60÷60=1(小时)
所以剩下的3人不能准时到达考场。
(2)这里可行的方案有几种,最佳方案为:好的那辆车把原来车上的4人送某地方后回去接其他人,而在整个过程中,不在车上的人步行,最后两批人同时到达考场。
画一个简单的路线图,设故障点为A,考场为B,C为好的车上4人下车点,D为汽车回头接到另外4人的地方。那么AD=BC
设AD=BC=x
则根据人与车所用时间相同可得
x/5=(15-x+15-2x)/60
x=2
所以这期间总共花时间为(13+11+13)/60=37/60小时=37分钟
他们能提前5分钟到达考场
∵每辆汽车上至少有一名教师,∴最多租六辆车。
(1)解:设,租甲种大客车x辆,则乙种大客车(6-x)辆,实际租车费用y元。
y=400x+280(6-x) 整理,得:y=120x+1680 根据题意有: 120x+1680<2300, 45x +30(6-x)≥(234+6) 解得:4≤x<6 ∴x=4或x=5
(2)解:x=4时,总费用为2160元,x=5时,总费用为2280元,
∴甲车为4辆,乙为2辆的时候最省费用。




















.jpg)

.jpg)
.jpg)


.jpg)
.jpg)

.jpg)





.jpg)
.jpg)
.jpg)
.jpg)
.jpg)